

XXIX CONGRESSO NAZIONALE ANCE

10-13 Ottobra 2019 Centro Congressi Hilton Screento Palace Sorrento (NA)

Atrial fibrillation in athletes

MARIA LUCIA NARDUCCI MD PHD ARRHYTHMIA UNIT FONDAZIONE POLICLINICO UNIVERSITARIO AGOSTINO GEMELLI IRCCS ROMA

Curr Treat Options Cardio Med (2018) 20: 98 DOI 10.1007/s11936-018-0697-9 CrossMark

Sports Cardiology (M Papadakis, Section Editor)

Atrial Fibrillation (AF) in Endurance Athletes: a Complicated Affair

Dimitrios Stergiou, MD¹ Edward Duncan, PhD^{1,2,*}

Address

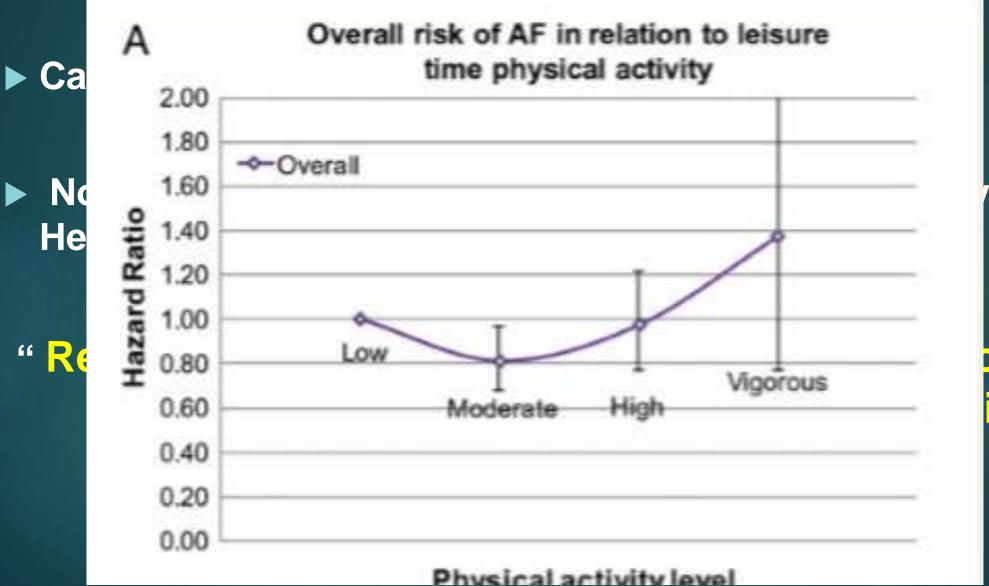
¹MSc Sports Cardiology, Cardiology Clinical Academic Group, St George's, University of London, London, UK ^{*,2}Department of Cardiology, The Bristol Heart Institute, Bristol, UK Email: edward.duncan@uhbristol.nhs.uk

Published online: 26 October 2018 © The Author(s) 2018

This article is part of the Topical Collection on Sports Cardiology

Review of the literature Afib athletes (based on observational studies! No randomized trials on athletes) Athlete's proarrhythmic heart Management of Athletes with Afib Future prospectives (big dataset)

ESC GUIDELINES 2016 Afib



The 2016 European Society of Cardiology (ESC) guidelines Afib management:

"moderate regular physical activity is recommended to prevent AF, while athletes should be counselled that long-lasting intense sports participation can promote AF"

(Class of recommendation 1, Level of evidence A)

OBSERVATIONAL STUDIES

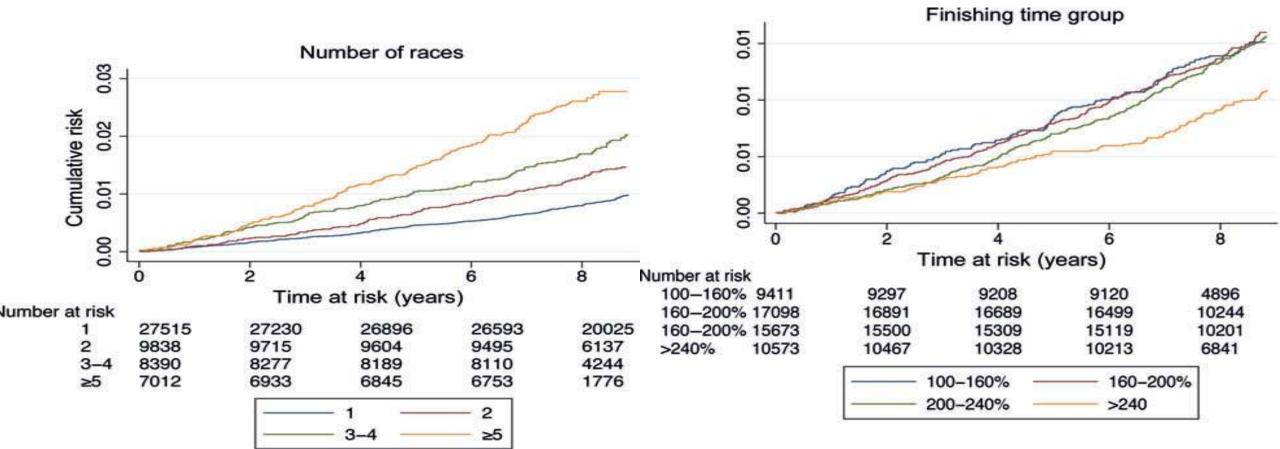
Eur

on (non ise"

First Case Series Linking AF and Endurance Sports

Lone atrial fibrillation in vigorously exercising middle aged men: case-control study

Jouko Karjalainen, Urho M Kujala, Jaakko Kaprio, Seppo Sarna, Matti Viitasalo


- Orienteering competitors: a competitive sport, originating in Sweden, that tests
 the skills of map reading and cross-country running, in which competitors race through
 an unknown area to find various checkpoints by using only a compass and
 topographical map, the winner being the finisher with the lowest elapsed time.
- 60 top ranked in 1984 in 5 different age classes (35-39, etc); 300 total; 262 (92%) participated in questionnaire: "Has a doctor ever told you that you have atrial fibrillation or atrial flutter." Current age 48 mean.
- Control group: 495 men age 50 mean; had been studied at age 35-39; had been healthy at 20 for military.
- Orienteers: lower mortality (1.7% v 8.5%); lower CAD (2.7% v 7.5%), fewer AF risk factors (10% v 30%). In men w/o AF risk factors lone AF occurred in 12/228 (5.3%) vs 2/212 (0.9%) of controls.
- Orienteers: Lone AF prevalence as of 1995 was 4.2% (4/95) for 46-54 yo; 5.6% (4/72) for 55-62 yo and 6.6% (4/61) for 63-70 yo. 3 had AFL too.

Karjalainen J et al, BMJ 1998;316:1784

Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study

Kasper Andersen¹*, Bahman Farahmand^{2,3}, Anders Ahlbom², Claes Held¹, Sverker Ljunghall¹, Karl Michaëlsson⁴, and Johan Sundström¹

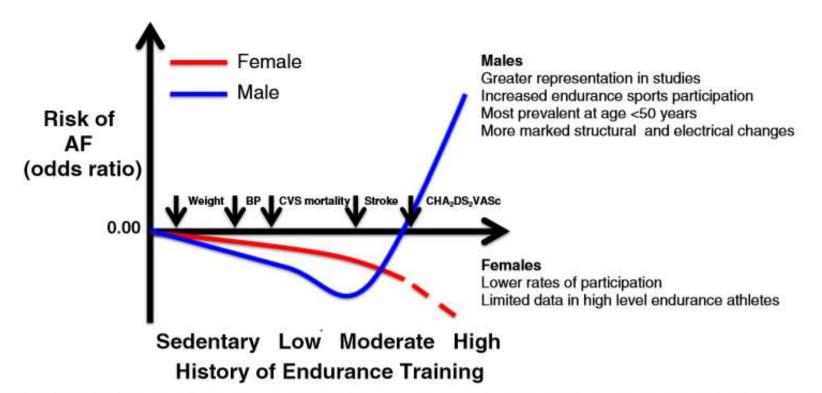
Observational studies on athletes

Andersen data confirmed by different observational studies on smaller populations including control groups (athletes vs non athletes)

Runners
 Skiers
 Cyclist
 ENDURANCE ACTIVITY

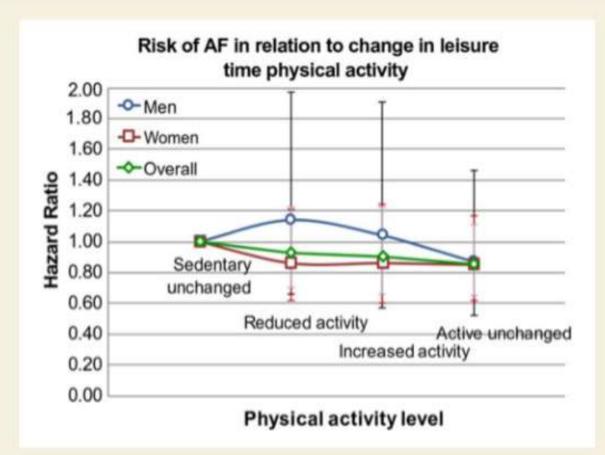
BostonMaster Sport med open 2016, Baldesberger S Eur Heart J 2008, Van Buuren F Acta Cardiol 2001

OBSERVATIONAL STUDIES



Calvo Europace 2016: dose-response relationship between phisical activity and lone atrial fibrillation

U shaped relationship


Table 5 Risk of AF associated with the prese		Table 6 Risk of AF in specific exercise subgroups			
Variables	Univariato OR		Unadjusted data	Adjusted for lifetime-accumulated exercise	
Abdominal obesity Height (>179 cm)	3.03 3.31	Competitive sport	2.74 (0.88–8.47)	0.88 (0.23-3.43)	
Obstructive sleep apnoea Sport activity	5.01	Exercise type Team sports	1	1	
Sedentary High-intensity exercise <2000 h High-intensity exercise ≥2000 h	1 0.38 3.88	Endurance sports Other	3.4 (1.37–8.4) 3.03 (0.9–9.7)	5.68 (1.72–18.7) 4.59 (0.5–41.1)	

OBSERVATIONAL STUDIES: GENDER DIFFERENCE IN ATHLETES

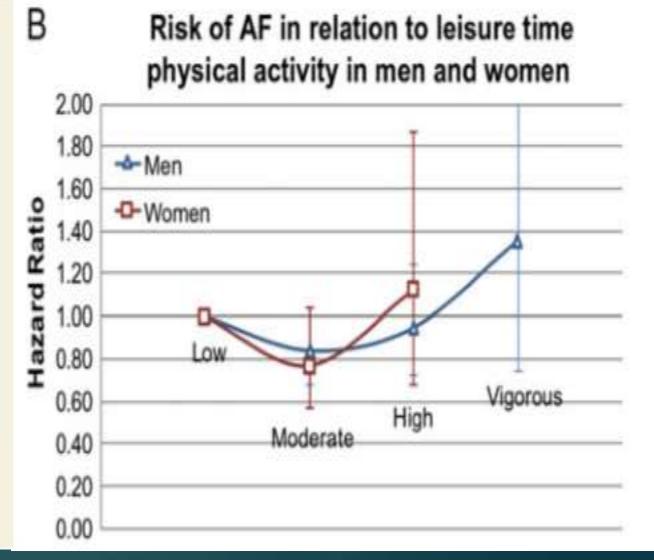


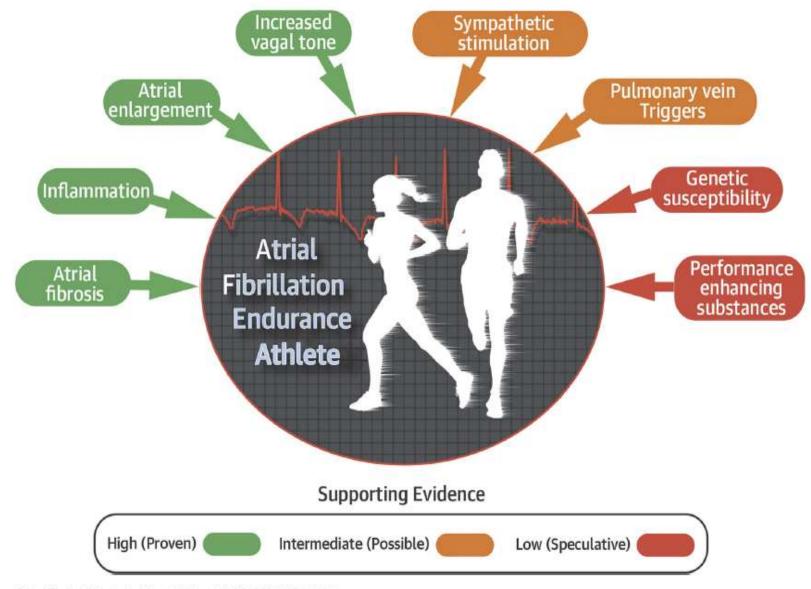
Fig. 1. Schematic of AF risk in males and females according to levels of participation in endurance sports. Male and female athletes show different risk profiles for AF as levels of endurance exercise increase. High-intensity endurance training is associated with increased risk of AF in males. The reverse is seen in females, although less data is available in females (dashed line). Despite an increasing AF burden in male endurance athletes, weight, blood pressure (BP), cardiovascular (CVS) mortality, stroke, and CHA₂DS₂-VASc scores fall in this group. Figure modified from Mohanty et al [40].

TROMSO STUDY : LONGITUDIAL PROSPECTIVE COHORT 10184 WOMEN

Figure 5 Risk of AF in relation to change in leisure time physical activity.

6 studies athletes Vs control (mean age 51, male 93%) OR athletes 5 Europace 2009

19 studies (511.503 pts) Subanalysis of athletes HR 1.98 U shaped (intense endurance and sedentary lifestyle associated with Afib) Int J Cardiol 2014



8 studies including 9.113 individuals OR athletes (<54 years) 1,64

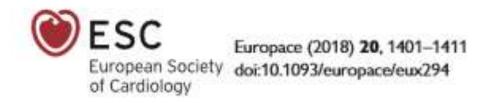
Int J Cardiol Heart Vasc 2018 **CENTRAL ILLUSTRATION** Proposed Pathophysiologic Mechanisms of AF in the Endurance Athlete

PREDICTORS OF AFib IN ENDURANCE ATHLETES

Estes III, N.A.M. et al. J Am Coll Cardiol EP. 2017;3(9):921-8.

Multiple factors contributing to atrial fibrillation (AF) with intense endurance exercise are shown with color coding according to the strength of the supporting evidence. PV = pulmonary vein.

Predictors of Afib in athletes



Increased Left atrial volume (cohort of 1777 sports men more common in rowing and cycling)

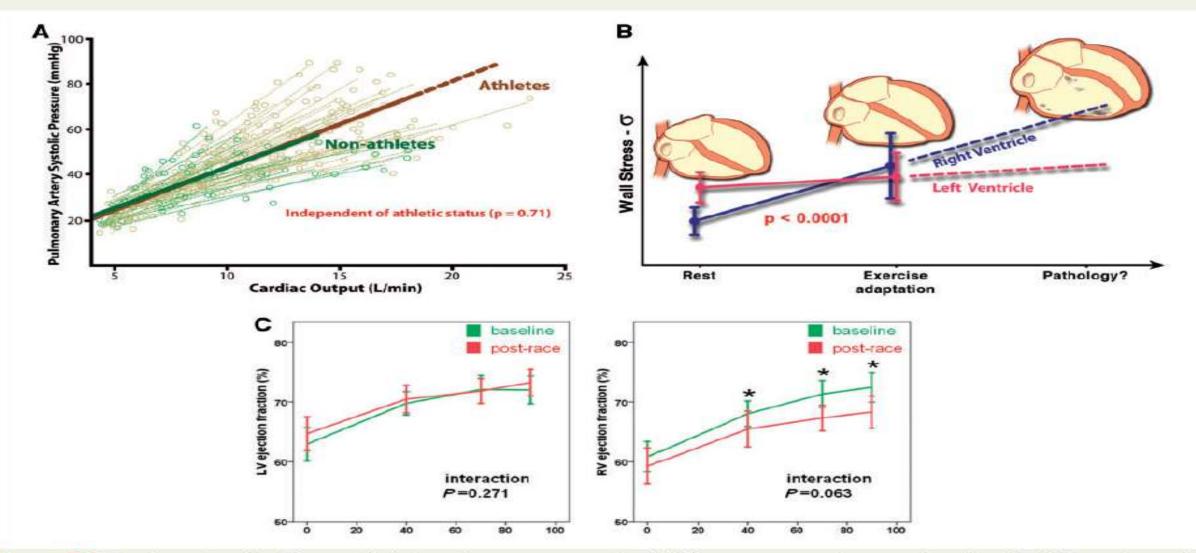
Bradicardia /higher vagal tone (Norwegian cross country skiers) –decreased expression of Current If SN automacity

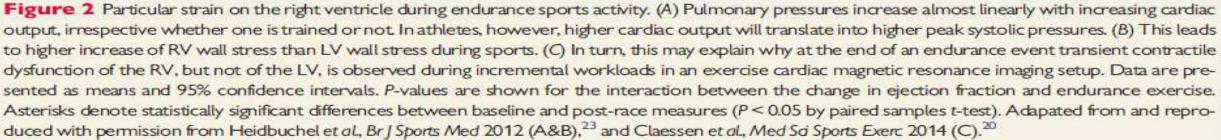
Cumulative duration of high intensity endurance training (cut off 2000 hours intense exertion/lifetime)

The athlete's heart is a proarrhythmic heart, and what that means for clinical decision making

Hein Heidbuchel*

Department of Cardiology, Antwerp University and University Hospital Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium


Received 16 July 2017; editorial decision 20 August 2017; accepted after revision 25 August 2017; anline publish-ahead-of-print 13 December 2017


Competitive Sport: ARRHYTHMIA TRIGGER, SUBSTRATE PROMOTOR AND INDUCER

1. Athlete with underlying and pre-existing heart disease

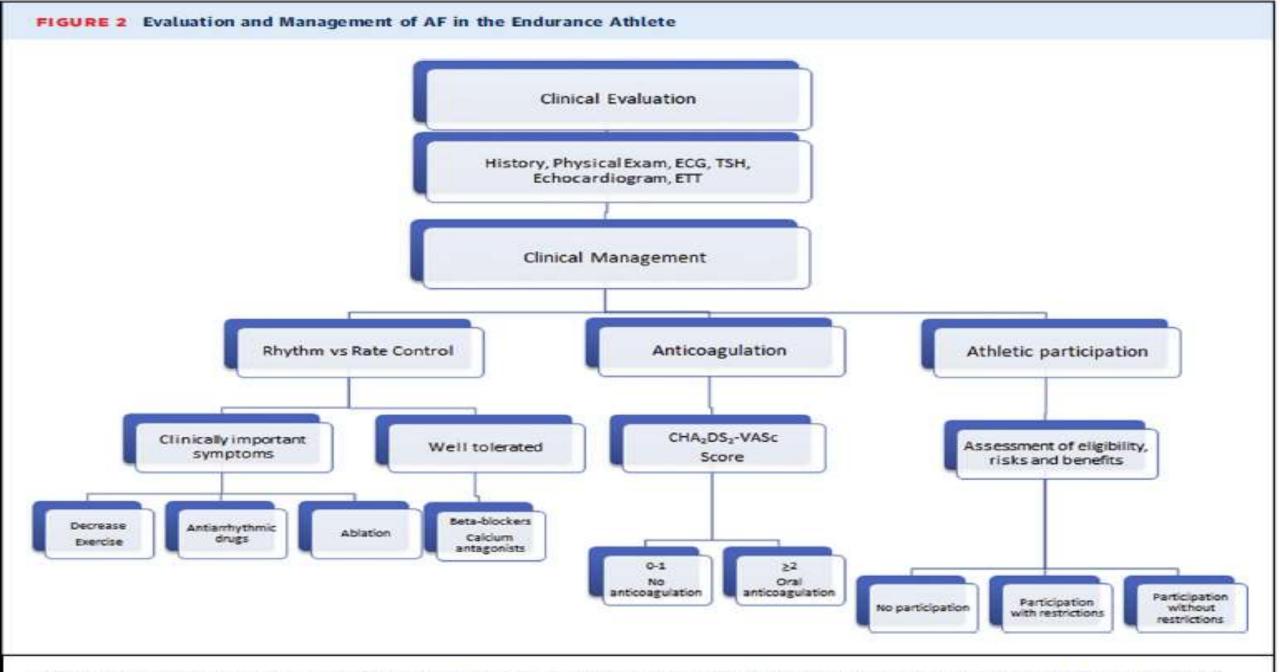
2. Physical activity may promote arrhythmias in genetic mutation (with silent phenotype)

3. Remodeling by sport activity induce a substrate for arrhythmias

PHENOTYPIC SEVERITY of UNDERLYING HEART DISEASE

STRUCTURAL or ELECTRICAL HD

INHERITED OR AQCUIRED HD


ENDURANCE (marathon race)

INTENSITY OF SPORTS

PURE POWER (wiightliftres)

COMBINED ENDURANCE WITH POWER (cycling, triathlon)

Effect size of sport on arrhythmias

Clinical evaluation and management of the endurance athlete is shown related to rhythm versus rate control, anticoagulation, and athletic participation. ECG = electrocardiogram; ETT = exercise treadmill test; TSH = thyroid-stimulating hormone; other abbreviation as in Figure 1.

Treatment options in athletes with AF	Advantages	Disadvantages	Comment
Anticoagulation (CHA ₂ DS ₂ -VASc ≥ 2)	Reduces stroke risk	CHA ₂ DS ₂ VASc not validated in athletes	There is no evidence that stroke risk in athletes and non-athletes with the same CHA ₂ DS ₂ -VASc score are the same
Flecainide	Reduces frequency and/or duration of AF episodes	Should be prescribed with a beta-blocker (see below)	ESC guidelines recommend no sporting activity until 2 half-lives of flecainide have elapsed due to pro-arrhythmic properties and risk of rapidly conducted flutter
Beta-blockers	May reduce AF burden in isolation or alongside flecainide	Reduced performance Poorly tolerated in setting of sinus bradycardia	Athletes are generally intolerant of or unwilling to take beta-blockers
Catheter ablation	May eradicate AF allowing return to full competition	Risk of complications May require multiple procedures	Most popular with athletes. Athletes dislike taking medication and look for a permanent fix

Table 1. Summary of key treatment options available to athletes with atrial fibrillation

Catheter ablation should be considered in athletes with AF and is often the treatment that the athletes prefer [17]. Results of catheter ablation in small non-randomized cohorts of patients have been described [53–55] and outcomes are reported to be similar to those achieved in non-athletes. Importantly, no data is available on ablation outcomes in athletes with persistent atrial fibrillation or structurally abnormal hearts, e.g., significant atrial dilation or left ventricular dysfunction. Catheter ablation allows the athlete to return to competition without ongoing antiarrhythmic drug use.

CATHETER ABLATION OF AFIB IN ATHLETES

FEW DATA ON PVI ISOLATION IN ATHLETES with PAROXYSMAL AFIB Koopman Europace 2011 Calvo Europace 2010

Lack of DATA on no PVI ISOLATION /PERSISTENT AFIb

No DATA on long term follow up with high detection tools ECG PATCHES or ILR

Atrial flutter in athletes

- Prevalence 31% in endurance vs 8% no athletes)
- European Recommendations for partecipation in competitive sport (2006) advice "CT isthmus ablation is MANDATORY in atlhletes with prior atrial flutter in the absence of adequate and safe medical treatment"
- Isthmus ablation is recommended prophylactically in athletes undergoing PVI for Afib.

Clinical significance of Afib in endurance Athletes

KETTUNEN Br J Sport med 2015

2363 atheletes without afib vs 1657 controls median f up 50 years

- Reduced total mortality HR 0.70 for athletes
- Reduced ischemic heart disease HR 0.68 for athletes
- Reduced stroke mortality for athletes HR 0.52

EORP AF eurobservational research programme

2

₹

□ ☆

O A https://www.escardio.org/Research/Registries-&-surveys/Registry-publications/

Registries & Surveys

EURObservational Research Programme

Registry Publications

4

Participate in a Registry

Why Sponsor the EORP?

EORP Publications

Latest results published from the EURObservational Registry Programme (EORP)

Table of contents

General publications on the EURObservational Research Programme Heart Failure (HF) registry Atrial Fibrillation General Long-Term registry Atrial Fibrillation General (AF Gen) Pilot registry Atrial Fibrillation Registry Collaborations Atrial Fibrillation Ablation (AFA) Pilot registry Atrial Fibrillation Ablation (AFA) Long-term registry Registry Of Pregnancy And Cardiac disease (ROPAC)

HIGH INTENSITY GROUP LOWER TOTAL MORTALITY

Table 4 Major adverse events during 1-year follow-up according to physical activity categories

	None (n = 949)	Occasional (n = 848)	Regular ($n = 503$)	Intense ($n = 115$)	P-value
CHA ₂ DS ₂ -VASc score	1990 - 1890 1990 - 1890	N 1951	5 S	3 S	
Mean score \pm SD	3.79 ± 1.74	3.31 ± 1.73	2.44 ± 1.68	$\textbf{2.17} \pm \textbf{1.78}$	< 0.0001
CHA2DS2-VASc class, n (%)					< 0.0001
Class 0	22 (5.8)	35 (4.1)	65 (12.3)	19 (16.5)	
Class 1	76 (8.0)	103 (12.1)	101 (19.1)	29 (25.2)	
$Class \ge 2$	851 (89.7)	710 (83.7)	364 (68.7)	67 (58.3)	

Future prospective Long-term athletic remodelling study

🖻 🖅 📴 Heidelbulche proarrhythmic 🕒 veins in left atrium - Bing in 🧍 Publication	ions ProAtHea $ imes$ +	- 🗸				- 6) ×
\leftrightarrow \rightarrow \circlearrowright \pitchfork https://www.proatheart.be/en/publications/				Å 🗓	τ <u>γ</u> ≞	l l	₫
pro@heart	ABOUT	THE STUDIES	HOM	e news/events	CONTA PUBLIC		N NL
					Pr-		

JAMA Netwo	ork⁻						
JAMA	Cardiology	Search All	\checkmark	Enter Search Term	Q	0	
y (f)					Download PDF	Full	
	Editorial May 2018				G Cite This	C Perm	
More ⊽		ng From Big Da hing—The Case		•	<)) Browse and subscribe to JAI Network podcasts!		
	Mintu P. Tura	khia, MD, MAS ^{1,2,3,4}			Trending		
	Author Affi JAMA Cardiol.	iliations . 2018-3(5)-371-372_doi-10_1001/iam	acardio_2018_02	207	Research	boembolic Ri	

Grazie per la vostra attenzione

